[image: image1.png]
C# Programming
1. Sound Knowledge of C++.

Course Summary:‐
This course presents Microsoft's C# programming language and the use of Visual Studio 2008 or
2010 to develop Windows applications using the .Net 3.5 or 4.0 Framework and libraries. Essential language syntax is included along with working with arrays, collections and exceptions. Object‐ Oriented concepts are covered by creating/using Classes, Inheritance and Polymorphism, including interfaces, generics and overloading. SDI/MDI Windows application using Forms, Controls and Events are developed and enhanced, including data‐bound controls. Database applications are developed using ADO.Net Data Sources and DataGridView/ToolStrip Controls. Organizing classes,

libraries and application deployment mechanisms are presented, along with IDE Debugging facilities. Topics Covered In This Course

Unit 1: Introducing C# and the .NET FrameworkThis module explains the .NET Framework, and using C# and

Visual Studio 2010 for building .NET Framework applications

• Introduction to the .NET Framework

• Creating Projects Within Visual Studio 2010

• Writing a C# Application

• Building a Graphical Application

• Running and Debugging Applications by Using Visual Studio 2010

Practical: Introducing C# and the .NET Framework
• Building a Simple Console Application

• Verifying the Application

After completing this module, students will be able to:

• Explain the purpose of the .NET Framework.

• Create Microsoft Visual C# projects by using Visual Studio 2010.

• Explain the structure of a C# application.

• Use the debugger to step through a program.

Unit 2: Using C# Programming ConstructsThis module explains the syntax of basic C# programming constructs.

• Declaring Variables and Assigning Values

• Using Expressions and Operators

• Creating and Using Arrays

• Using Decision Statements

• Using Iteration Statements

Practical : Using C# Programming Constructs
• Calculating Square Roots with Improved Accuracy

• Converting Integer Numeric Data to Binary

• Multiplying Matrices

After completing this module, students will be able to:

• Declare variables and assign values.

• Create expressions by using operators.

• Create and use arrays.

• Use decision statements.

• Use iteration statements.

Unit 3: Declaring and Calling MethodsThis module explains how to create and call methods.

• Defining and Invoking Methods

• Specifying Optional Parameters and Output Parameters

Practical : Declaring and Calling Methods
• Calculating the Greatest Common Divisor of Two Integers by Using Euclid's Algorithm

• Displaying Results Graphically

After completing this module, students will be able to:

• Describe how to declare and call methods

• Define and call methods that take optional parameters and output parameters

Unit 4: Handling ExceptionsThis module explains how to catch exceptions and handle them. Students will also learn how to throw exceptions.

• Handling Exceptions

• Raising Exceptions

Practical : Handling Exceptions
• Detecting an Exceptional Condition

• Checking for Numeric Overflow

After completing this module, students will be able to:

• Describe how to catch and handle exceptions

• Describe how to create and raise exceptions

Unit 5: File Handling This module explains how to perform basic file I/O operations in a C# application.

• Accessing the File System

• Reading and Writing Files by Using Streams

Practical: File Handling
• Building a Simple Editor

• Making the Editor XML Aware

After completing this module, students will be able to:

• Describe how to access the file system by using the classes that the .NET Framework provides.

• Describe how to read and write files by using streams.

Unit 6: Creating New TypesThis module explains how to create and use new types (enumerations, classes, and structures)

• Creating and Using Enumerations

• Creating and Using Classes

• Creating and Using Structures

• Comparing References to Values

Practical : Creating New Types
• Using Enumerations to Specify Domains

• Using a Structures to Model a Simple Type

• Using a Class to Model a More Complex Type

• Using a Nullable Type

After completing this module, students will be able to:

• Describe how to create and use enumerations.

• Describe how to create and use classes.

• Describe how to create and use structures.

• Explain the differences between reference and value types.

Unit 7: Encapsulating Data and MethodsThis module explains how to control the visibility and lifetime of members in a type.

• Controlling Visibility of Type Members

• Sharing Methods and Data

Practical: Encapsulating Data and Methods
• Hiding Data Members

• Using Static Members to Share Data

• Implementing an Extension Method

After completing this module, students will be able to:

• Describe how to control the visibility of type members.

• Describe how to share methods and data.

Unit 8: Inheriting From Classes and Implementing InterfacesThis module explains how to use inheritance to create new reference types

• Using Inheritance to Define New Reference Types

• Defining and Implementing Interfaces

• Defining Abstract Classes

Practical: Inheriting From Classes and Implementing Interfaces
• Defining an Interface

• Implementing an Interface

• Creating an Abstract Class

After completing this module, students will be able to:

• Use inheritance to define new reference types.

• Define and implement interfaces.

• Define abstract classes.
Unit 9: Managing the Lifetime of Objects and Controlling Resources
This module explains how to manage the lifetime of objects and control the use of resources.

• Introduction to Garbage Collection

• Managing Resources

Practical: Managing the Lifetime of Objects and Controlling Resources
• Implementing the IDisposable Interface

• Managing Resources Used By an Object

After completing this module, students will be able to:

• Describe how garbage collection works in the .NET Framework.

• Manage resources effectively in an application.

Unit 10: Encapsulating Data and Defining Overloaded Operators
This module explains how to create properties and indexers to encapsulate data, and how to define operators for this data.

• Creating and Using Properties

• Creating and Using Indexers

• Overloading Operators

Practical : Creating and Using Properties
• Defining Properties in an Interface

• Implementing Properties in a Class

• Using Properties Exposed By a Class

Practical: Creating and Using Indexers
• Using an Indexer Exposed by a Class

Practical: Overloading Operators
• Defining the Matrix and MatrixNotCompatible Types

• Implementing Operators for the Matrix Type

• Testing the Operators for the Matrix Type

After completing this module, students will be able to:

• Explain how properties work and use them to encapsulate data.

• Describe how to use indexers to access data through an array-like syntax.

• Describe how to use operator overloading to define operators for your own types.

Unit 11: Decoupling Methods and Handling EventsThis module explains how to decouple an operation from the method that implements an operation, and how to use these decoupled methods to handle asynchronous events.

• Declaring and Using Delegates

• Using Lambda Expressions

• Handling Events

Practical : Decoupling Methods and Handling Events
• Raising and Handling Events

• Using Lambda Expressions to Specify Code

After completing this module, students will be able to:

•
Describe the purpose of delegates, and explain how to use a delegate to decouple an operation from the implementing method.

•
Explain the purpose of lambda expressions, and describe how to use a lambda expression to define an anonymous method.

•
Explain the purpose of events, and describe how to use events to report that something significant has happened in a type that other parts of the application need to be aware of.

Unit 12: Using Collections and Building Generic TypesThis module introduces collections, and describes how to use Generics to implement type-safe collection classes, structures, interfaces, and methods.

• Using Collections

• Creating and Using Generic Types

• Defining Generic Interfaces and Understanding Variance

• Using Generic Methods and Delegates

Practical: Using Collections
• Optimizing a Method by Caching Data

Practical: Building Generic Types
• Defining a Generic Interface

• Implementing a Generic Interface

• Implementing a Generic Method

After completing this module, students will be able to:

• Use collection classes.
• Define and use generic types.

• Define generic interfaces and explain the concepts of covariance and contravariance.

• Define and use generic methods and delegates.

Unit 13: Building and Enumerating Custom Collection Classes
This module explains how to implement custom collection classes that support enumeration.

• Implementing a Custom Collection Class

• Adding an Enumerator to a Custom Collection Class

Practical : Building and Enumerating Custom Collection Classes
• Implementing the IList TItem Interface

• Implementing an Enumerator by Writing Code

• Implementing an Enumerator by Using an Iterator

After completing this module, students will be able to:

• Implement a custom collection class.
• Define an enumerator for a custom collection class.

